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Abstract
A comprehensive theory of interfacial fluctuation effects occurring at two-
dimensional wedge (corner) filling transitions in pure (thermal disorder) and
impure (random bond disorder) systems is presented. Scaling theory and
the explicit results of transfer matrix and replica trick studies of interfacial
Hamiltonian models reveal that, for almost all examples of intermolecular
forces, the critical behaviour at filling is fluctuation dominated, characterized
by universal critical exponents and scaling functions that depend only on the
wandering exponent ζ . Within this filling-fluctuation (FFL) regime, the critical
behaviour of the midpoint interfacial height, probability distribution function,
local compressibility and wedge free energy are identical to corresponding
quantities predicted for the strong-fluctuation (SFL) regime for critical wetting
transitions at planar walls. In particular the wedge free energy is related to the
SFL regime point tension, which is calculated for systems with random bond
disorder using the replica trick. The connection with the SFL regime for all
these quantities can be expressed precisely in terms of special wedge covariance
relations, which complement standard scaling theory and restrict the allowed
values of the critical exponents for both FFL filling and SFL critical wetting.
The predictions for the values of the exponents in the SFL regime recover
earlier results based on random walk arguments. The covariance of the wedge
free energy leads to a new, general relation for the SFL regime point tension,
which derives the conjectured Indekeu–Robledo critical exponent relation and
also explains the origin of the logarithmic singularity for pure systems known
from exact Ising studies due to Abraham and co-workers. Wedge covariance
is also used to predict the numerical values of critical exponents and position
dependence of universal one-point functions for pure systems.
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1. Introduction

Fluids adsorbed near wedges, cones and corners show filling phenomena [1–11] similar
to the wetting of planar wall–fluid and fluid–fluid interfaces [12, 13]1. Above a filling
temperature Tfill a wedge (say) in contact with vapour at bulk coexistence is completely filled
by liquid, analogous to the complete wetting of a planar wall–fluid interface above the wetting
temperature Twet. There are, however a number of notable distinctions between wetting and the
different possible types of filling transition. Firstly, thermodynamic arguments [1–3] dictate
that filling precedes wetting, occurring when the contact angle satisfies θ = α, where α is
the wedge tilt angle (see figure 1). Thus filling may occur in the absence of any wetting
transition, i.e. if the walls are partially wet up to the bulk critical temperature. Secondly
the conditions for observing continuous (critical) filling [7, 9] in the laboratory are much
less restrictive than for continuous (critical) wetting [12]. For example three-dimensional
cone or corner filling should be continuous provided the line tension is negative. Finally, the
critical singularities and fluctuation effects occurring at critical filling reflect the divergence of
different length-scales compared with wetting. For example, in a three-dimensional wedge,
long-wavelength fluctuations in the interfacial height along the wedge dominate and lead to an
interfacial roughness that is much larger than for wetting at a planar wall and which exhibits
universal properties [7, 9, 10].

αα
lw eql  (x)

Figure 1. Schematic portrait of the equilibrium interfacial height leq(x) for a fluid adsorbed in a
wedge close to a filling transition. lw denotes the midpoint interfacial height.

For two-dimensional wedges (and three-dimensional cones) on the other hand something
quite different and unexpected occurs. Recent studies based on effective interfacial
Hamiltonians [5, 6, 9] and more microscopic Ising models [11] indicate that there is a
fundamental connection with the strong-fluctuation (SFL) regime of critical wetting [13–17].
More specifically, even in the presence of long-ranged forces, the divergence of the interfacial
height at critical filling together with the precise scaling form of the midpoint interfacial height
probability distribution function (PDF) are identical to predictions for the critical wetting SFL
regime. In other words the substrate geometry effectively turns off the influence of long-ranged
solid–fluid and fluid–fluid forces so the fluid mimics fluctuation behaviour predicted for planar
systems with short-ranged forces. In two dimensions this has been demonstrated for both pure
and impure systems (with random bond disorder) and can be precisely expressed in terms of
special wedge covariance laws which relate the interfacial heights and PDFs in the different
geometries at bulk two-phase coexistence [6, 9]. Whilst the demonstration of these laws,
particularly for impure systems, is rather technical, the final expressions are extremely simple
and contain a great deal of information. Consider a fluctuation-dominated filling transition
occurring in a two-dimensional wedge and let lw(θ, α) and Pw(l; θ, α) denote the equilibrium
midpoint interfacial height and corresponding PDF respectively. Now let lπ (θ) and Pπ(l; θ)
denote the interfacial height and PDF for an SFL regime wetting transition, occurring at a planar
wall–fluid interface, written in terms of the contact angle. Covariance for the interfacial heights
implies that at bulk coexistence and as θ → α,

1 The fluctuation theory of wetting, including disordered systems, is discussed at length in [13].
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lw(θ, α) = lπ (θ − α). (1)

The statement of covariance for the PDFs is even stronger:

Pw(l; θ, α) = Pπ(l; θ − α) (2)

implying that not only the interfacial height but also the roughness (and all moments of the
distribution) at filling and wetting are similarly related.

In this paper we further investigate the connection between filling and wetting and
demonstrate covariance relations for other quantities of interest. Again, because the derivation
of these results is rather technical we quote their final form here. For the excess free energy
of the wedge fw(θ, α) at coexistence we find that for both pure and impure systems

fw(θ, α) = τ(θ)− τ(θ − α) (3)

where τ(θ) denotes the point tension near an SFL regime critical wetting transition. We also
consider the local compressibility for filling χw(z; θ, α) corresponding to the derivative of the
midpoint density profile w.r.t. chemical potential µ evaluated at two-phase coexistence. This
is related to the corresponding expression χπ(z; θ) for SFL regime wetting by

χw(z; θ, α) =
(
θ

α
− 1

)
χπ(z; θ − α) (4)

where z is the direction normal to the wall.
These covariance relations complement the standard scaling hypothesis for the singular

contribution to the corner free energy and may be understood heuristically by considering the
special influence that the wedge (and also cone) geometry has on interfacial configurations.
The relations are rather restrictive and from them we may deduce the allowed values of the
critical exponents for both two-dimensional filling and critical wetting transitions without
explicit model calculations. This is somewhat analogous to the restrictions imposed by the
principle of conformal invariance for bulk and surface critical phenomena [18]. We shall also
use the covariance relations to derive new results for the point tension and position dependence
of the local compressibility. Indeed for the point tension we shall be able to derive a conjectured
critical exponent relation due to Indekeu and Robledo [19, 20] and also explain why, for pure
systems, the point tension shows a logarithmic singularity as θ → 0 [21].

Our paper is arranged as follows: in section 2 we present the necessary background
theory for critical wetting describing, in turn, the derivation of critical exponent relations and
fluctuation regimes from heuristic scaling theory and the scaling of the density profile, PDF and
their short-distance expansions (SDEs). In section 3 we discuss the singularities of the point
tension first recalling the scaling conjecture of Indekeu and Robledo [19] and exact Ising model
results for pure systems due to Abraham et al [21]. We then present a lengthy calculation of
the point tension τ for critical wetting in pure and impure systems using continuum interfacial
models. As far as we are aware τ has not been calculated before for systems with random bond
disorder and the derived expression shows singular behaviour as θ → 0 in full agreement with
the Indekeu–Robledo conjecture. In section 4 we begin our discussion of two-dimensional
filling transitions and first discuss critical exponent relations, heuristic fluctuation theory and
the scaling of the density profile and PDF, which parallels our earlier discussion of critical
wetting. In section 5 we recall the main results of explicit effective Hamiltonian studies of
filling which will be further developed here. These calculations support the scaling theory
developed in section 4 and also demonstrate the covariance laws (1)–(3) quoted above. The
consequences of these relations and the restrictions they place on the allowed values of the
critical exponents at two-dimensional filling and wetting (in systems with short-ranged forces)
are discussed at length. A new and very simple result for the point tension is also discussed,
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from which we can derive the Indekeu–Robledo exponent relation. In section 6 we turn
our attention to scaling behaviour occurring off bulk coexistence and focus on the position
dependence of the local compressibility leading to the final covariance relation (4). Finally
we revisit the nature of filling and wetting in pure systems and use the covariance relations to
re-derive the specific results of the transfer matrix studies. We finish our article with a brief
summary of our main results and discussion of future work.

2. Two-dimensional critical wetting and SFL regime

We begin with a brief survey of the central results from the theory of critical wetting paying
special attention to critical exponents, fluctuation regimes and the scaling of the density
profile and PDF. Further details and original references can be found in the excellent review
articles [12, 13].

2.1. Critical exponents and exponent relations

Consider the interface between a planar substrate (wall), located in the z = 0 plane, and a
bulk fluid phase at temperature T and chemical potential µ (and corresponding pressure p).
The two-phase coexistence line is denoted µ = µsat(T ) with corresponding bulk liquid and
vapour phase densities ρl and ρv respectively. Throughout this article we set kBT ≡ 1 for
convenience. We suppose the wall–vapour interface preferentially adsorbs the liquid phase
and is completely wet above a wetting transition temperature Twet. Thus the wetting phase
boundary is defined by the vanishing of the contact angle

θ(T ) = 0 T � Twet. (5)

The wetting transition corresponds to a singularity in the excess free energy (surface tension) of
the planar wall–vapour interface σwv. This is defined [22] by subtracting the bulk contribution
from the total grand potential �

σwv = � + pV

A
(6)

in the limit of infinite volume V and planar areaA. On approaching a critical wetting transition
the adsorption � ≈ (ρl − ρv)lπ , with lπ the equilibrium height of the liquid–vapour interface
above the wall, diverges continuously. The critical wetting transition has two relevant scaling
fields which we can identify (for fixed strength of the wall–fluid intermolecular potential) as
t ′ = (Twet − T )/Twet and h = (ρl − ρv)(µsat − µ). From scaling theory we anticipate that
off two-phase coexistence σwv contains a singular term, fsing, which vanishes at the critical
wetting phase boundary and can be written

fsing = t ′2−αsWπ(ht
′−�) (7)

where αs, � are the surface specific heat and gap exponents respectively, Wπ(x) is the scaling
function and we have restricted our attention to t ′ � 0. Now at coexistence we have, by
definition, fsing ≡ σwv − (σwl + σlv) so that from Young’s equation [22] it follows that the
contact angle vanishes as

θ ∼ t ′(2−αs)/2 (8)

and can be used as an alternative measure of the temperature-like scaling field. In addition to
the mean interface height lπ we also need to consider the divergence of the r.m.s. interfacial
width or roughness ξ⊥ and the transverse correlation length ξ‖ measuring the correlations
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in fluctuations of the interfacial height along the wall. At h = 0, the divergence of these
length-scales is characterized by critical exponents defined by

lπ ∼ t ′−βs ξ⊥ ∼ t ′−ν⊥ ξ‖ ∼ t ′−ν‖ (9)

and we expect scaling behaviour similar to (7) off coexistence. Thus, along the wetting critical
isotherm (T = Twet, h → 0) we define

lπ ∼ h−ψ (10)

and anticipate that the critical exponent ψ = βs/�. Critical exponent relations immediately
follow from the scaling hypothesis. Firstly from the Gibbs adsorption equation [12, 22]

∂fsing/∂h = lπ (11)

we have

� = 2 − αs + βs (12)

which identifies the gap exponent. Secondly, from the compressibility sum-rule (see for
example [12])

∂2fsing/∂h
2 ∝ ξ 2

‖ (13)

we have 2−αs −2� = −2ν‖ so that on eliminating the gap exponent we arrive at the important
relation

2 − αs = 2ν‖ − 2βs (14)

which is valid for all dimensions, ranges of forces and fluctuation regimes of interest. The
perpendicular and transverse correlation lengths are related through the wandering exponent
defined by [15]

ξ⊥ ∼ ξ
ζ

‖ (15)

with the value of ζ � 0 dependent on the dimensionality and qualitative type of disorder.
For discussions of wetting and filling in two-dimensional systems the most relevant values
are ζ = 1/2 and 2/3 for pure (thermal disorder) and impure systems (random bond disorder)
respectively. Recall that random fields destroy phase coexistence in two dimensions so cannot
be considered. Also whilst values of the wandering exponent ζ < 1/2 have been predicted for
some models of interfacial roughening transitions in quasi-crystalline materials this is not of
particular importance to the general fluctuation theory of wetting (and filling) and will not be
considered here. The predictions we make for the values of critical exponents at filling will
assume that, in two dimensions, 1 > ζ � 1/2.

2.2. Fluctuation regimes for wetting

Quite generally, provided ζ > 0, the critical singularities at wetting are believed to fall into
three distinct classes depending on the interplay between interfacial wandering and the ‘direct’
influence of intermolecular forces [13–17]. The latter can be modelled by the binding potential

W(l) = − a

lp
+
b

lq
+ · · · l > 0 (16)

with a, b effective Hamaker constants and indices q > p > 0 depending on the range of the
intermolecular forces. The binding potential describes the bare or mean-field (MF) wetting
transition and in order for this to be continuous we require that a = 0, b > 0 at the (MF) phase
boundary. Thus a ∝ (T MF

wet − T ) where T MF
wet is the MF wetting temperature. The existence
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of three regimes can be understood semi-quantitatively [16] by comparing the bare binding
potential with an effective fluctuation contribution

Wfl(l) ≈ *ξ 2
⊥

2ξ 2
‖

(17)

the form of which is suggested by interfacial Hamiltonian models. Beyond MF level we
anticipate large-scale fluctuation effects with lπ ∼ ξ⊥ and thus using (15) one can estimate

ξ⊥
ξ‖

≈ l1−1/ζ (18)

implying that Wfl(l) ≈ l2(1−1/ζ ). The competition between Wfl(l) and the bare potential leads
to the following three fluctuation regimes.

• Mean field (MF) regime. If q < 2(1/ζ − 1) fluctuation effects are negligible, lπ � ξ⊥
and the mean interface position remains close to the minimum of the binding potential.
The phase boundary remains a = 0 with βs = 1/(q − p).

• Weak-fluctuation (WFL) regime. If q > 2(1/ζ − 1) but p < 2(1/ζ − 1) the repulsion
from the wall has an entropic origin but the attraction is still due to long-ranged forces.
In this regime the phase boundary remains a = 0 with

βs = 1

2(1/ζ − 1)− p
(19)

with large-scale interfacial fluctuations lπ ∼ ξ⊥.
• Strong-fluctuation (SFL) regime. If p > 2(1/ζ − 1), fluctuations dominate leading to

a renormalization of the phase boundary and universal critical behaviour. Because the
wetting phase boundary no longer occurs at a = 0 one cannot use the above heuristic
argument to determine the values of the critical exponents. However a remarkable
feature of two-dimensional wetting is that the values of the SFL regime critical exponents
can be explicitly related to the wandering exponent ζ using very general random walk
arguments [15]. For wetting in systems with ζ � 1/2 the full set of values for the critical
exponents is

αs = 0 βs = ζ

1 − ζ
ν‖ = 1

1 − ζ
(20)

and

� = 2 − ζ

1 − ζ
ψ = ζ

2 − ζ
(21)

which are in precise agreement with the explicit results of Ising model [23] and effective
interfacial Hamiltonian studies [24–27]. The values of these critical exponents will play
a central role in our discussion of two-dimensional filling.

Finally we point out that in both the WFL and SFL regimes, where lπ ∼ ξ⊥, the divergence
of the interfacial height at h = 0 written in terms of the contact angle,

lπ (θ) ∼ θ−β̂s (22)

is characterized by a universal critical exponent

β̂s ≡ 2βs

2 − αs
= ζ

1 − ζ
(23)

which follows directly from the critical exponent relation (14) without using the explicit values
of the critical exponents (19), (20). We shall return to this later when we use the covariance
relations to determine the values of the critical exponents at two-dimensional filling.



Wedge covariance for two-dimensional filling and wetting 1175

2.3. Scaling of the PDF and the short-distance expansion

The position dependence of the equilibrium density profile, ρ(z), local response functions
such as the compressibility/susceptibility χ(z) ∝ ∂ρ(z)/∂µ and also higher-point functions
all show scaling behaviour in the WFL and SFL scaling regimes. The scaling emerges in the
appropriate limits z → ∞, t ′ → 0, h → 0 with zt ′βs , ht ′−� arbitrary and for the profile we
anticipate [28–30]

ρ(z) = ρl − (ρl − ρv)+π(zt
′βs , ht ′−�) (24)

where +π(x, y) is the scaling function satisfying +π(0, y) = 0, +π(∞, y) = 1 and which is
distinct in the SFL and WFL regimes. Clearly the scaling of ρ(z) does not include oscillatory
structure close to the wall or effects associated with bulk and surface criticality but rather
reflects the large-scale fluctuations of the unbinding liquid–vapour interface. For large z but
zt ′βs → 0 the profile has a characteristic algebraic SDE [28–30]

ρ(z)− ρl ≈ (ρv − ρl)(zt
′βs)γ (25)

where, for simplicity we have set h = 0. The SDE critical exponent γ (referred to as θ in
earlier work) also describes the behaviour of the local compressibility and pair-correlation
functions close to the wall. The critical exponent γ is not independent, and can be related to
others using standard surface Maxwell relations and sum-rules. Importantly it takes different
universal values in the SFL and WFL regimes and can be identified as [29, 30]

γ SFL = 2(1/ζ − 1)− 1/βs (26)

and

γWFL = 2/ζ − 1 (27)

which are valid for arbitrary dimensions. The scaling of the profile is directly related to
the scaling of the interfacial height PDF, Pπ(l), since interfacial fluctuations dominate the
distribution of matter and we may write

ρ(z) = ρl − (ρl − ρv)

∫ z

0
Pπ(l) dl (28)

where we have assumed the interface separates regions of bulk vapour and liquid density and
we have omitted the field dependence of the PDF. Throughout this paper we shall omit the
field dependence whenever the equation containing it is exact within effective Hamiltonian
theory and not just restricted to the asymptotic critical regime. Since the contact angle θ is an
equivalent (possibly nonlinear) measure of the temperature-like scaling field t ′ it is possible to
write the scaling dependence as Pπ(l; θ, h) rather than Pπ(l; t ′, h). Moreover for the next few
sections we concentrate on behaviour occurring at h = 0 and define Pπ(l; θ) ≡ Pπ(l; θ, 0).
Scaling then implies that in the WFL and SFL regimes

Pπ(l; θ) = ãθ β̂s.π(ãlθ
β̂s) (29)

where .π(x) is the scaling function and ã is a suitable metric factor having dimensions of
inverse length. This may be chosen so that the argument of the scaling function is equivalent
to the length-scale ratio l/ lπ (θ). Notice that the power-law dependence of the contact angle
follows from (23) and is the same in the WFL and SFL regimes. The different fluctuation effects
occurring in these regimes are distinguished by the appropriate scaling functions .SFL

π (x) and
.WFL

π (x). The two functions are similar at large distances where, out of the range of the
binding potential, they decay exponentially quickly but have quite distinct SDEs.π(x) ∼ xγ−1

describing the limit l/ lπ → 0. Using the appropriate values for the critical exponents in two
dimensions it can be seen that, for both pure and impure systems, the interface makes many



1176 A O Parry et al

more excursions to the wall in the SFL regime than in the WFL regime. Hereafter we shall
only need to deal with the properties of the SFL regime.

The explicit results of effective interfacial Hamiltonian studies are completely consistent
with the scaling predictions and SDE. For pure systems with just thermal disorder the PDF in
the SFL regime is particularly simple [6, 27]

Pπ(l; θ) = 2*θe−2*θl (30)

where * denotes the stiffness coefficient of the unbinding interface and may be identified
with σlv for continuum, fluid-like systems for which the interface is isotropic. For random
bond disorder the expression for Pπ(l; θ) is considerably more complicated but can still be
calculated analytically using replica trick methods [13]

Pπ(l; θ) = *θ

π
√

2lκ
e−lθ2*2/2κ

∫ ∞

0
ds

√
se−s/4

s + 2lθ2*2/κ
(31)

where κ is the inverse length-scale associated with the disorder (see later). Note that in both
these expressions the respective combinations lθ and lθ2, together with the SDEs, are in
agreement with the above scaling theory.

3. The point tension for two-dimensional wetting in pure and impure systems

3.1. The Indekeu–Robledo conjecture

The one ingredient missing in our review of fluctuation effects at two-dimensional wetting is
the nature of the point tension τ measuring the excess free energy associated with the point
of three-phase contact between wall–vapour and wall–liquid interfaces [19–21, 31, 32]. The
reason for this, as first pointed out by Abraham, Latrémolière and Upton (ALU) [21], is that
beyond MF level, fluctuation effects make the definition of τ a rather subtle issue. The purpose
of this long section is to identify a method of defining τ within continuum effective interfacial
Hamiltonian theory that we can apply to the case of wetting with random bond disorder. To
begin recall that within MF theory, it is straightforward to define the point/line tension τ by
simply subtracting the necessary bulk and interfacial contributions from the grand-potential
of the heterogeneous wall–fluid interface [19,20,31]. Such studies reveal that as T → Twet at
h = 0, τ contains a singular contribution which we write

τsing ∼ t ′2−αl (32)

with a point/line tension specific heat exponent αl which depends sensitively on the range
of the forces. A crucial insight into the singularities of the point/line tension was made by
Indekeu and Robledo [19], who pointed out that within MF theory the singularities of τ were
consistent with the scaling equation

αl = αs + ν‖ (33)

and conjectured that this is generally valid even in the presence of fluctuation effects.
The Indekeu–Robledo conjecture is important because it relates the excess free energy
of a heterogeneous wall–fluid interface to the properties of a homogeneous wall–vapour
interface. As we shall show there are very good reasons for regarding this as the
precursor of a covariance relationship between filling and critical wetting. Indeed, we
shall be able to derive a precise relation for the point tension, valid for pure and
impure systems, which is in perfect agreement with (33). Assuming the validity of the
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scaling relation for the point tension in two dimensions we can identify, in the SFL
regime

2 − αl = 1 − 2ζ

1 − ζ
(34)

which completes our list of critical wetting exponents.
Following our earlier discussion of the interfacial height and PDF it is convenient for later

purposes to measure the singular contribution to the point tension as a function of the contact
angle rather than t ′. We shall only consider the point tension for systems with short-ranged
forces (belonging to the SFL regime) and thus expect

τsing(θ) ∼ θ2−αl (35)

with 2 − αl given by (34) In fact, as we shall show, for interfacial models with strictly short-
ranged (contact) forces there is no ambiguity defining the point tension itself τ(θ) to be a
function of θ , although, of course, such models are only well defined when θ is small. Thus,
for pure systems with ζ = 1/2, the Indekeu–Robledo scaling relation predicts 2 − αl = 0,
which may either mean that τ remains finite at Tw or diverges (or vanishes) more slowly than
any power law. For random bonds however, the Indekeu–Robledo prediction is unambiguous:
αl = 3 so that τsing ∼ θ−1. These predictions are discussed in detail below.

3.2. The ALU point tension for pure systems

ALU point out that, at least for two-dimensional systems, considerable care has to be taken
in defining the point tension due to the influence of large-scale interfacial wandering, which
smoothes out the point of contact. In MF theories, which ignore fluctuation effects, there
is no pathology involved in constructing boundary conditions which induce a line of contact
between a wall–vapour interface and the edge of an infinite drop. However, this latter concept
becomes ill defined as soon as fluctuation effects are introduced since the surface of an infinite
drop of liquid has unbounded fluctuations in the interfacial height. To overcome this problem
ALU propose a fluctuation-theory-based definition of τ , involving a convolution of partition
functions. This requires as input some appropriate choice for the partition function representing
a finite-size liquid drop. In this way the thermodynamic limit can be taken yielding a well
defined point tension, although the expression obtained depends crucially on the choice of
restricted partition function used to model the edge of the liquid drop. The most satisfactory
definition shows the singular behaviour

τsing(θ) ∼ − ln θ (36)

close to the wetting transition, which is indeed consistent with the Indekeu–Robledo exponent
relation. The other fluctuation definitions considered by ALU yield point tensions that are
either non-singular or have a different numerical pre-factor of the logarithm (other than unity).
However as pointed out by ALU the above divergence is appealing since it coincides precisely
with the singularity predicted by a heuristic energy–entropy balance argument. In an infinite
Ising strip of width L lattice spacings and with opposing surface fields (which we refer to as a
+− strip), it is well understood that pseudo-phase coexistence only occurs below the wetting
temperature and for sufficiently large strip widths [33–36]. This behaviour is characterized
by an exponentially large correlation length (see their figure 3) reflecting the asymptotic
degeneracy of the lowest two transfer matrix eigenvalues. Physically this means that the
interface sticks to each wall over exponentially large distances, which can be estimated by

ξ‖
ξ0

∼ e*θL+2τ (37)
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valid for large L, small θ and θL → ∞. Here ξ0 is an appropriate (non-singular) length-
scale for measuring distances along the strip, which we anticipate is of the order of the bulk
correlation length. This has to be introduced for dimensional reasons and plays no role in
determining the divergence of τ near wetting. The argument of the exponential reflects the
free-energy cost of an interface jump from one wall to the other with contributions arising from
surface free-energies, leading to the *θL term and two point tensions. Exact evaluation of
the correlation length in the +− Ising model and also in solid-on-solid approximation (valid at
low temperatures away from the bulk critical point) yields a point tension in precise agreement
with result (36) from the ALU convolution definition. Finally we note that, within the full
transfer matrix theory discussed here, finite size effects in the point tension for systems (both
pure and impure) with short-ranged forces are exponentially small in the strip width or length.
Thus the thermodynamic limit of the point tension is well defined.

3.3. Continuum interfacial models of the point tension in pure systems

The purpose of this subsection is to show that one may also obtain the logarithmic singularity
of the point tension for pure systems from the asymptotic scaling of the PDF as evaluated using
a continuum effective interfacial Hamiltonian. The advantage of this approach is that it can
be readily generalized to systems with random bond disorder, which we shall consider next.
To begin, we introduce the interfacial model and explicitly evaluate the point tension using the
ALU finite-size +− strip identification discussed above.

The general fluctuation theory of wetting two dimensions in pure systems, without
quenched impurities, is based on the interfacial model (see [13] and references therein)

H [l] =
∫

dx

{
*

2

(
dl

dx

)2

+ hl + W(l)

}
(38)

where l(x) is the local height of the unbinding (liquid–vapour) at position x along the wall and
W(l), * are the binding potential and stiffness coefficient introduced earlier. We emphasize
again that we shall focus on isotropic bulk fluid systems and identify* with the surface tension
σlv. The partition function Zπ(l1, l2;X) of an interface of length X with fixed end positions
l(0) = l, l(X) = l′ is expressed in spectral form using continuum transfer matrix methods [27],

Zπ(l, l
′;X) =

∑
n

ψ∗
n (l

′)ψn(l)e
−EnX (39)

where the eigenvalues and eigenfunctions, labelled n = 0, 1, 2, . . . satisfy the Schrödinger
equation

− 1

2*

d2ψn

dl2
+ (hl + W(l))ψn(l) = Enψn(l). (40)

Thus in the thermodynamic limit X → ∞ the singular part to the free energy is simply

fsing = E0 (41)

which, for h = 0 and T < Tw, allows us to identify the contact angle

θ =
(−2E0

*

)1/2

. (42)

Here we have used Young’s equation in the small-contact-angle limit, for which the interfacial
model is valid. Similarly the normalized interfacial height PDF and parallel correlation length
follow as

Pπ(l) = |ψ0(l)|2 (43)
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and

ξ‖ = 1

E1 − E0
(44)

respectively. For future reference we also define the matrix elements

〈m|f (l)|n〉 =
∫

dl ψ∗
m(l)f (l)ψn(l) (45)

which will appear in the transfer matrix theory for the wedge geometry. As discussed by
Burkhardt [27], the scaling form of the PDF (30) at h = 0 characteristic of the SFL regime,
together with the values of the critical exponents quoted earlier (with ζ = 1/2), readily emerges
from the transfer matrix formalism if, instead of the binding potential contribution to (38), one
imposes the boundary condition on the wavefunctions

ψ ′
n(0) = −λψn(0) (46)

where, for pure systems, λ ∝ t ′. Specifically, the ground-state energy E0 = −λ2/(2*),
contact angle θ = λ/(*) and mean interfacial height lπ = 1/(2*θ).

Next consider the interfacial model of the finite width +− Ising strip at bulk coexistence.
Since the system has short-ranged forces we can mimic the influence of the surface fields
through the boundary conditions

ψ ′
n(0) = −λψn(0) ψ ′

n(L) = λψn(L). (47)

For Twet > T and large L the first two eigenfunctions are

ψ0(l) ∝ cosh(
√
(2*|E0|)(l − L/2)) (48)

and

ψ1(l) ∝ sinh(
√
(2*|E1|)(l − L/2)). (49)

Using the boundary conditions (47) we find for λL → ∞

E0 = − λ2

2*
(1 + 4e−λL + · · ·) (50)

and

E1 = − λ2

2*
(1 − 4e−λL + · · ·). (51)

Writing these in terms of the contact angle of the semi-infinite geometry we arrive at the desired
expression for the parallel correlation length

ξ‖ ∼ e*θL

4*θ2
. (52)

From this we can now extract the desired result for the point tension in the interfacial model
using the ALU identification (37):

τ = − ln θ + A (53)

where A = − ln 2
√
*ξ0 may be regarded as an unimportant non-singular contribution, the

value of which depends on the choice of reference length-scale ξ0. In the interfacial model (38)
with short-ranged forces the only possible choice of length-scale intrinsic to the interface is
the inverse surface stiffness so that ξ0 = 1/*, which is directly proportional to the bulk
correlation length (and recall we have set kBT ≡ 1). With this choice of reference length-scale
our expression for the point tension in pure systems is simply

τ(θ) = − ln θ − ln 2. (54)
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In terms of the parameters * and λ this is equivalent to

τ = − ln
λ

*
− ln 2 (55)

which will be useful when we consider random bond systems.
Having derived this result using the ALU identification observe that the logarithmic

divergence of the point tension for pure systems is also consistent with the behaviour of
the PDF Pπ(l; θ) for wetting at a single wall. To see this recall that, similar to the correlation
length ξ‖ (for the +− strip geometry), the scaling form of the PDF Pπ(l; θ) is also determined
by the surface free energy and point tension. Ignoring the normalization constraint for the
moment, notice that Pπ(l; θ) may be identified as

Pπ(l; θ) ∝ e−f ×(l) (56)

where f ×(l) denotes the excess free-energy cost of an interfacial configuration constrained to
be at height l at some arbitrary position along the wall (which we can take to be the origin). For
asymptotically large distances l � lπ typical interfacial configurations determining Pπ(l; θ)
will have a triangular shape (see later) with incident angle θ . The free energy f ×(l) can
therefore be estimated as

f ×(l) = 2*θl + 2τ (57)

showing contributions from two point tensions and the surface free energies. Notice this
latter term is precisely twice the value of the analogous contribution to the ALU correlation
length (37) so we immediately recover the expression for the PDF (30). To extract the
point tension from Pπ(l; θ) we have to bear in mind that unlike the correlation length
identification (37) the PDF satisfies the addition constraint of normalization. Moreover in
two dimensions one is not capable of distinguishing the normalization constant from the point-
tension term e−2τ since the latter term is simply another constant (independent of l). Turning
this around we observe that the normalization constant N(θ) appearing in the asymptotic
scaling form

Pπ(l; θ) = N(θ)e−f ×(l) (58)

must be related to the (exponential) of the point tension. The ALU identification of τ through
the correlation length ξ‖ is in fact in precise accord with the behaviour of the PDF provided
we identify

Pπ(l; θ) = e−2*θl−τ /ξ0 (59)

or more simply

τ = − ln (Nξ0) (60)

where again ξ0 is an appropriate intrinsic length-scale introduced for dimensional reasons and
which plays no role in determining the divergence of τ . Using the choice ξ0 = 1/* appropriate
to the interfacial model we recover the ALU identification (54).

3.4. The point tension for critical wetting with random bonds

We now turn to the evaluation of the point tension for two-dimensional critical wetting with
random bond disorder. Together with the interfacial model result for pure systems this will
be crucial in our discussion of the scaling connections between filling and the SFL regime of
critical wetting. With random bond disorder the interfacial model for two-dimensional wetting
is written [13, 26]

H [l] =
∫

dx

{
*

2

(
dl

dx

)2

+ hl + W(l) + Vr(x, l)

}
(61)

where the Gaussian random variable Vr(x, l) has statistical properties
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Vr(x, l) = 0 (62)

Vr(x, l)Vr(x ′, l′)− Vr(x, l) Vr(x ′, l′) = �δ(x − x ′)δ(l − l′) (63)

where the overbar denotes an average over the quenched disorder with strength �. It is
convenient to introduce the inverse length-scale κ = �*/2 as a measure of the bulk disorder
which vanishes for the pure (thermal) system. As first shown by Kardar [26] the model can be
studied using the replica trick identification

lnZπ = lim
n→0

Zn
π − 1

n
(64)

where Zn
π may be interpreted as the partition function for n non-interacting interfaces in an

environment with bulk random bonds. Some details of this calculation are repeated below
together with the results necessary for the calculation of the point tension and later the wedge
interfacial height distribution function and free energy. Performing the disorder average
introduces interactions described by the many-body Hamiltonian (ignoring l-independent
terms)

H [{li}] =
∫

dx

{
n∑
i=1

(
*

2

(
dli
dx

)2

+ hl + W (li)

)
−�

n∑
i<j

δ
(
li − lj

)}
(65)

so that the interacting n-body partition function for interfaces of lengthX with boundary values
li at x = 0 and l′i at x = X has the spectral expansion

Zn
π({li}, {l′i};X) =

∞∑
m=0

ψ(n)∗
m ({l′i})ψ(n)

m ({li})e−EmX (66)

where ψ(n)
m is the mth state wavefunction with eigenvalue Em for n interacting interfaces

satisfying the Schrödinger equation Ĥ (n)ψ(n)
m = Emψ

(n)
m . Again, ignoring constant terms, the

Hamiltonian operator is

Ĥ (n) =
n∑
i=1

(
− 1

2*

∂2

∂l2i
+ hl + W(li)

)
−�

n∑
i<j

δ(li − lj ). (67)

For systems with strictly short-ranged forces, characteristic of the SFL regime, it is convenient
to adopt the natural generalization of the boundary condition (46) which reads [13]

lim
li→0

∂ψ(n)
m ({lj })
∂li

= −λψ(n)
m ({lj })

∣∣∣∣
li=0

(68)

for any lj . Note that the inverse length-scale λ is characteristic of the pure wall–fluid interface
and remains finite at the wetting transition in the presence of random bonds. The ground-state
solution to the eigenvalue problem is given by the Bethe ansatz wavefunction [13, 26]

ψ
(n)
0 ({li}) = Cn(λ, κ)e

−λ∑ li+κ
∑

i<j |li−lj | (69)

with normalization constant

Cn(λ, κ) = (2κ)n/2

(
�(λ/κ + 2n− 1)

�(λ/κ + n− 1)

)1/2

(70)

where �(x) is the usual gamma function. From the wavefunction one can easily obtain the
ground-state energy, and by considering the limit of E(n)

0 /n as n → 0 identify

fsing = − (λ− κ)2

2*
(71)
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as the singular contribution to the free energy. Thus the contact angle is simply

θ = (λ− κ)

*
(72)

and note that these expressions identically reproduce the results for the pure system when
κ → 0. From the above it is clear that the disorder lowers the wetting transition temperature,
which now occurs at λ = κ . We shall also need the expression for the mean interface height

lπ = 1

2κ
ψ ′
(
λ

κ
− 1

)
(73)

which involves the derivative of the psi or digamma function defined by

ψ(x) = d ln�(x)

dx
. (74)

Again in the limit κ → 0 this reproduces the appropriate result lπ = 1/(2λ) for pure systems.
For finite κ however the asymptotic divergence of lπ as λ → κ is different to the pure system
and

lπ ∼ κ

2(λ− κ)2
. (75)

From the results for the singular contribution to the free energy and divergence of the interfacial
height we have αs = 0 and βs = 2 in agreement with the general expectations for the SFL
regime with ζ = 2/3. The PDF Pπ(l; θ) describing the fluctuations of the interfacial height
in the asymptotic scaling regime is given by (31).

To evaluate the point tension for random bonds we use the properties of the PDF taking
care to extract the relevant quantities at finite n before continuing to n = 0. The n-point PDF
is the square of the ground-state wavefunction, which may be written as the ordered product

P (n)({li}) = C2
n(λ, κ)

n∏
j=1

e−2(λ+(n+1−2j)κ)lj (76)

with l1 < l2 < · · · < ln. By analogy with the interpretation of the PDF for pure systems the
coefficient of each lj term appearing in the exponential may be viewed as the surface free-
energy cost of constraining the height of the j th interface whilst the normalization constant
contains the required information about the point tension. Using the appropriate replica trick
identification we generalize the result (60) for the point tension in the pure system to

τ = − lim
n→0

1

n

(
C2
n(λ, κ)(ξ

RB
0 )n − 1

)
(77)

where, in an obvious notation ξRB
0 is a suitable choice of reference length-scale for the random

bond system which plays the same, trivial-dimensional role as the length-scale ξ0 for systems
with purely thermal disorder. We emphasize that the choice of ξRB

0 does not influence the
asymptotic divergence of the point tensions as T → Twet and only contributes towards the
non-singular, background term analogous to the constant A appearing in (54). Thus we find

τ = −ψ
(
λ

κ
− 1

)
− ln 2κξRB

0 (78)

which again introduces the digamma function. We now choose the value of ξRB
0 so that upon

taking the limit κ → 0 we recover the correct background term for the pure system (55). As
κ → 0 the argument of the digamma function diverges and we can use the asymptotic large-x
expansion

ψ(x) ∼ ln x − 1

2x
+ · · · . (79)
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Note that the necessary logarithmic singularity for the point tension in the pure system emerges
naturally from the properties of the digamma function. The appropriate choice of reference
length-scale is therefore ξRB

0 = (*)−1 ≡ ξ0 and is identical to that chosen in our earlier
discussion of purely thermal disorder. We regard this as a rather pleasing feature of the present
replica trick definition of τ using the PDF. In terms of the inverse length-scales λ, κ and * our
expression for the point tension with random bond disorder is therefore

τ = −ψ
(
λ

κ
− 1

)
+ ln

(
*

2κ

)
. (80)

Alternatively for fixed * and κ we can eliminate λ and rewrite this in terms of the contact
angle θ recalling that θ ∝ λ − κ ∝ t ′. This is the form that is most convenient for discussing
the connection with two-dimensional filling. Our final result is

τ(θ) = −ψ
(
θ*

κ

)
+ ln

(
*

2κ

)
(81)

which should be compared with (54) for the pure system. Equations (80) and (81) are the main
new results of this section and will play an important role in our discussion of two-dimensional
wedge filling with random bond disorder.

We are now in a position to test the validity of the Indekeu–Robledo critical exponent
relation for the line/point tension. The singularities of the point tension occurring as θ → 0
are contained within the digamma function, which diverges as ψ ∼ −1/x as x → 0. Thus we
can identify the singular contribution to the point tension

τsing ∼ κ

*θ
(82)

implying αl = 3, which is in precise agreement with the conjectured exponent relation. Note
also that as with the pure system the point tension diverges to +∞ as T → Twet although the
quantitative divergence is much stronger.

4. Two-dimensional filling in pure and impure systems: I. Scaling theory

Our presentation of fluctuation effects occurring at two-dimensional filling transitions parallels
our earlier treatment of critical wetting. In turn we shall consider (A) the definitions of critical
exponents and the derivation of exponent relations, (B) a discussion of fluctuation regimes
from heuristic scaling arguments and (C) the scaling and SDE of the density profile and PDF.
From these preliminary considerations will emerge a possible fluctuation-induced connection
with the SFL regime of critical wetting, which will be precised later using covariance relations.

4.1. Critical exponents and exponent relations

A two-dimensional wedge is a ‘V’-shaped substrate formed from the junction of two linear
(identical) walls that meet at the origin (say) with angles +α and −α measured w.r.t. to
the z = 0 line. Thus the height of the wall above the line is described by a wall-function
zw(x) = tan α|x|, where the x-axis runs across the wedge. The wedge is considered to be in
contact with a bulk vapour phase at temperature T and chemical potential µ and is supposed
to preferentially adsorb the liquid phase along the surface of the walls and, in particular,
the wedge bottom. Thus the equilibrium density profile ρ(z, x) is liquid-like in the filled
region and will show packing effects very close to the wall although these will not be our
concern here. Very general macroscopic, thermodynamic arguments [1–3] indicate that at
bulk coexistence µ = µsat the wedge is completely filled by liquid provided the planar contact
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angle satisfies θ < α. Thus for the most common case where the contact angle decreases
with increasing temperature, the transition from partial to complete filling occurs at a filling
transition temperature Tfill satisfying

θ(Tfill) = α. (83)

This implies that complete filling precedes complete wetting and also that the filling
temperature Tfill can be lowered simply by increasing the angle of the wedge. On approaching
the filling phase boundary at (Tfill, µsat(Tfill)) the mean height of the interface lw, as measured
from the wedge bottom, diverges. The divergence is discontinuous and continuous for first-
order and second-order (critical) filling respectively. Whilst in three dimensions both types of
transition are possible, in two-dimensional filling transitions will almost always be continuous.
At two-phase coexistence the equilibrium height profile leq(x) measured from the z = 0 line,
with lw ≡ leq(0) is essentially flat in the filled region of the wedge owing to the absence
of any macroscopic curvature as dictated by the Laplace equation. The lateral extent of the
filled region is therefore controlled by a correlation length ξx ≈ 2lw cot α which is trivially
related to the interfacial height. Critical effects at two-dimensional filling may be viewed as
arising from breather-mode-like fluctuations in the interface height, which roll the points of
contact up and down the sides of the wedge thus changing the height and volume of the filled
region. A similar picture holds for three-dimensional conic filling but is modified in a three-
dimensional wedge owing to long-wavelength fluctuations along the system. Similar to wetting
the filling transition has two relevant scaling fields, which we can write t = (Tfill −T )/Tfill and
h = (ρl − ρv)(µsat − µ) respectively. However for filling one has the additional possibility
of using the wedge angle to control the deviation from the phase boundary. Thus for fixed T
close to Tfill the combination θ − α ∝ t is a linear measure of the temperature-like scaling
variable. At bulk coexistence µ = µsat the divergence of the midpoint interfacial height and
roughness are characterized by critical exponents

lw ∼ t−βw ξ⊥ ∼ t−ν⊥ (84)

and we anticipate that in a fluctuation-dominated regime βw = ν⊥ so that lw ∼ ξ⊥. Along the
filling critical isotherm T = Tfill, h → 0, the midpoint height lw (and ξ⊥) also diverges and
we introduce the critical exponent

lw ∼ h−ψw (85)

to characterize this. Two other critical exponents are defined from the singularities of the wedge
free energy fw(θ, α, h), which, for later purposes, we have written as a function of the variables
which highlight the covariance with wetting. Also for h = 0 we define fw(θ, α) ≡ fw(θ, α, 0).
At a thermodynamic level the wedge free energy is defined by subtracting from the total grand
potential � the bulk free energy and the contribution from two (infinite) planar walls:

fw(θ, α, h) = � + pV − σ (π)
wv A (86)

where σ (π)
wv is the wall–vapour tension for the planar (α = 0) system and A is the total surface

area exposed to fluid. By construction the wedge free energy vanishes in the planar limit
α = 0. On the other hand we expect that fw(α, α) is unbounded due to the adsorption of
a macroscopic amount of liquid. Near the filling transition we anticipate that fw contains
a singular contribution that the shows scaling behaviour depending on the variables h and
t ∝ (θ − α) only. We write

f sing
w ∼ t2−αwWw(ht

−�w) (87)

which introduces the wedge specific heat exponent αw, gap exponent �w and free-energy
scaling function Ww(x). Partial derivatives of the wedge free energy are related to
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thermodynamic observables, similar to the Gibbs adsorption equation for planar systems.
Firstly, in the free energy the bulk ordering-field h is conjugate to the total two-dimensional
volume of adsorbed fluid so that

∂f
sing
w

∂h
∝ l2w. (88)

Secondly variation of the wedge angle α linearly changes the height and lateral extent of the
filled region, implying [5]

∂f
sing
w

∂t
∝ lw. (89)

In this way we obtain the exponent relations

�w = 2 − αw + 2βw (90)

and

1 − αw = −βw (91)

showing there is only one free critical exponent for two-dimensional filling.

4.2. Fluctuation regimes for two-dimensional filling

The classification of fluctuation regimes and also the values of the critical exponents for two-
dimensional filling follow from a rather simple heuristic scaling theory somewhat analogous
to the Lipowsky–Fisher treatment of critical wetting considered earlier. To begin we consider
MF theory, which ignores the fluctuation effects arising from thermal excitations or quenched
impurities. As first shown by Rejmer et al [4], interfacial models give a very elegant description
of filling phenomena at MF level. For open wedges corresponding to small α (for which
tan α ≈ α) the equilibrium MF profile leq(x) may be found from minimization of the effective
interfacial free energy [4]

Fw[l] =
∫

dx

{
*

2

(
dl

dx

)2

+ h(l − α|x|) + W(l − α|x|)
}

(92)

which can be justified from analysis of a more general drumhead-like model valid for larger
α. As mentioned earlier, l(x) denotes the interfacial height relative to the z = 0 line, whilst
W(l) is the binding potential appropriate to the planar system. We emphasize that the small-α
approximation is not expected to introduce any peculiarities and the critical behaviour predicted
by the model (at MF level and beyond) is believed to be valid for arbitrary wedge angles. The
free-energy functional is minimized subject to the appropriate boundary conditions that the
equilibrium profile leq(x) → α|x| + lπ as |x| → ∞. The resulting Euler–Lagrange equation
can be integrated once to give an explicit equation for the midpoint height (restricting our
attention to h = 0) [4, 6, 7],

*(α2 − θ2)

2
= W(lw) (93)

which can be solved trivially. Thus for binding potentials of the form (16) the dependence on
q is unimportant and the MF critical behaviour is determined solely by the leading-order index
p. As θ → α we may expand the above equation

θ = α +
a

α*
l−pw + · · · (94)

recalling that a remains finite at the filling transitions since Tfill < Twet. From this it follows
immediately that the MF value of the height critical exponent at filling is βw = 1/p [7].
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The absence of any q dependence is a first indication that critical filling may be less sensitive
to the nature of the intermolecular forces compared with critical wetting.

It is possible to extend this simple MF approach to include thermal and disorder-induced
fluctuation effects in a heuristic way. The last equation tells us how the difference or
shift between the contact angle and wedge tilt angle depends on the direct influence of the
intermolecular forces. In the presence of fluctuation effects arising from either thermal or
random bond disorder it is natural to suppose that (94) generalizes to

θ = α + �αp(lw) + �αfl(lw) (95)

where �αp(l) ∼ l−p is the direct angle shift and �αfl(l) is the shift arising due to fluctuation
effects, which we anticipate takes the form of a ratio of length-scales. Now by construction
�αfl(l) is not the ratio lw/ξx since this is, essentially, the first term in (95) and is purely
geometrical. Instead we write �αfl(l) ∝ ξ⊥/ξfl, where ξfl is an appropriate fluctuation-related
length-scale, which must be much larger than the midpoint height. If we also make the
reasonable assumption that this length-scale is controlled by the wandering exponent ζ then
the simplest possible choice given these constraints is ξfl ∼ l

1/ζ
w similar to the relation ξ‖ ∼ l1/ζ

appropriate to a fluctuation-dominated (WFL or SFL regime) wetting transition. Consequently
if fluctuations dominate we anticipate

�αf l(l) ∼ l1−1/ζ (96)

similar to the length-scale ratio ξ⊥/ξ‖ (18) appearing in the Lipowsky–Fisher analysis.
This simple, heuristic modification of the MF analysis is particularly powerful because

for filling the phase boundary always remains θ = α and is not modified by fluctuations. It
follows that the critical behaviour should fall into two possible classes.

• Filling mean field (FMF) regime. Ifp < 1/ζ−1 fluctuation effects are negligible, lw � ξ⊥
and the critical exponent βw = 1/p is unchanged from its MF value.

• Filling fluctuation (FFL) regime. Ifp > 1/ζ−1 there are large-scale fluctuations, lf ∼ ξ⊥,
and the critical exponents are universal and determined by the wandering exponent. For
the divergence of the filling height we predict

βw = ζ

1 − ζ
(97)

with the values of the other critical exponents following from the relations (90) and (91).

At this point, a number of remarks are in order.

(I) These predictions are in perfect agreement with exact results known from transfer matrix
and replica trick studies of interfacial models, which find βw = 1 and 2 for pure (ζ = 1/2)
and impure (ζ = 2/3) systems with short-ranged forces [5, 6]. They are also consistent
with studies of filling (corner wetting) in square lattice Ising models [11,37,38]. Moreover
for pure systems it is possible to completely classify the critical behaviour using the
interfacial model [5] and show that the criticality falls into the above two regimes with
a marginal value p = 1 corresponding to the FFL/MF borderline. The critical exponent
remains βw = 1 for this marginal case.

(II) The existence of two fluctuation regimes for filling clearly contrasts with the
phenomenology of critical wetting, for which there are three. Also note that the borderline
between the FFL and FMF regime occurs when p = 1/ζ − 1, which is different
to the SFL/WFL and WFL/MF borderlines for critical wetting, which happen when
p = 2(1/ζ − 1) and q = 2(1/ζ − 1) respectively. The regime in which there is universal
critical behaviour is broader for filling than for wetting.
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(III) The value of the critical exponent βw = 1/p in the FMF regime is different to the value
βs = 1/(q − p) in the MF regime of critical wetting. Therefore when the intermolecular
forces are sufficiently long ranged to induce MF-like criticality, there is no apparent
connection between filling and wetting. However for sufficiently short-ranged forces the
predicted value for the critical exponent βw (97), belonging to the FFL regime, is the
same as the random-walk result for the critical exponent βs for the critical wetting SFL
regime (20). This is a first hint that there may be some fluctuation-induced connection
between the two transitions.

4.3. Scaling of the PDF and short-distance expansion

In the FFL regime we anticipate that, within the filled region of the wedge, the density profile
ρ(z, x) exhibits universal scaling behaviour related to the scaling of the interfacial height PDF.
We shall focus on the behaviour of the density profile and distribution function occurring at
the centre of the wedge (x = 0) and define ρw(z) ≡ ρ(z, 0). Thus, for z → ∞, t → 0, h → 0
with ztβw and ht−�w arbitrary we expect

ρw(z) = ρl − (ρl − ρv)+w(zt
βw , ht−�w) (98)

where the scaling function satisfies +w(∞, y) = 1 and +w(0, y) = 0 for any y. Notice that
unlike the case of critical wetting, where one has to distinguish between scaling behaviour in
the SFL and WFL regimes, the scaling function for fluctuation-dominated filling is unique.
Associated with the scaling of the profile is an SDE describing the algebraic behaviour close
to the wall compared with the filling height. At h = 0 we write, analogous to (25)

ρw(z)− ρl ≈ (ρv − ρl)(zt
βw)γw (99)

which introduces our final critical exponent γw for filling and which is only defined for the
FFL regime. Similar to SDE exponents for SFL and WFL regime wetting, the value of the
critical exponent γw is not independent and can be related to the other exponents defined for
filling. To see this, consider that the value of the wall–fluid intermolecular potential contains
an additional short-ranged contribution of strength h0 localized to the bottom of the wedge.
In a magnetic (Ising) language this is would correspond to an incremental point field at the
wedge apex and serves only to introduce a new non-singular length-scale proportional to the
value of the field. This is useful because differentiation of the wedge free energy w.r.t. h0

yields the value of the density at or near the wedge bottom. Now the field h0 is irrelevant,
in the renormalization group sense, and can be included in the scaling hypothesis for the free
energy (87) by allowing for an additional scaling variable h0t

βw , which is simply the ratio of
relevant length-scales. Differentiation of the singular contribution to the wedge free energy
therefore implies that the singular contribution to the density at the wedge bottom is simply
ρw(0) ∼ t , where we have used the exponent relation (91). However from the SDE we can
also identify ρw(0) ∼ tβwγw implying that

γw = 1/βw (100)

which will later prove to be an extremely useful exponent relation.
The scaling of the profile at filling follows from the scaling of the PDF for the midpoint

interfacial height, written Pw(l; θ, α, h), similar to (28). At bulk coexistence, h = 0, we
simply write

Pw(l; θ, α) ≡ Pw(l; θ, α, 0). (101)

In the FFL regime we expect that Pw(l; θ, α) is characterized by a universal scaling function
.w(x) such that

Pw(l; θ, α) = ã(θ − α)βw.w(ãl(θ − α)βw) (102)
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where .w(x) is a universal function and the inverse length-scale ã is chosen, as with .π(x),
so that the argument is simply l/ lw. Clearly the PDF has the SDE .w(x) ∼ xγw−1. The
relationship between the universal scaling function .w(x) for filling and the corresponding
function .SFL

π (x) for two-dimensional wetting will be central to our study.

5. Interfacial models of two-dimensional filling: II. Exact results and covariance

5.1. Transfer matrix results

We begin with the transfer matrix theory of filling in pure systems [5] based on the interfacial
Hamiltonian

Hw[l] =
∫

dx

{
*

2

(
dl

dx

)2

+ h(l − α|x|) + W(l − α|x|)
}

(103)

valid for open wedges. It is easiest to assume that the horizontal range is [−X/2, X/2]
with periodic boundary conditions at the end-points. Note that the model trivially recovers the
interfacial Hamiltonian for planar wettingH [l] (38) when α = 0. Again we emphasize that the
assumption of smallα is not believed to be in any way important as regards the critical behaviour
occurring near the filling transition and predictions based on the above interfacial model are
supported by Ising model studies of filling at right-angle corners for different lattice types [11].
To obtain the partition function corresponding to the fluctuation sum over Boltzmann weights
it is convenient to make the change of variable l̃ ≡ l − α|x|, in which case we can re-write the
Hamiltonian as

Hw = 2*α
(
l̃e − l̃(0)

)
+ H [l̃] (104)

where l̃e ≡ l(X/2) denotes the end-point interfacial height (relative to the wall) and l̃(0) ≡ l(0)
is the midpoint height above the bottom of the wedge. Thus the angle α enters the partition
function only through a local exponential boost factor associated with the midpoint height
(and end-points). The ensemble average 〈l(0)〉 defines the equilibrium midpoint height lw and
from (104) it is immediately apparent that

lw = − 1

2*

∂fw

∂α
(105)

which is a precise version of (89). The same relation is also valid in the presence of random
bond disorder and will prove useful later. The model can be analysed using continuum transfer
matrix methods, which yield very general expressions for the wedge free energy and interfacial
height PDF, valid for general choices of binding potential. In the thermodynamic limitX → ∞
and in terms of the inner product defined in (45) the wedge free energy follows as

fw(α, θ, h) = − ln〈0|e2*αl|0〉. (106)

The probability of finding the interface at height l̃ from the wall at position x along it is given by

Pw(l̃, x) =
∑
n

〈n|e2*αl|0〉ψ∗
n (l̃)ψ0(l̃)e(E0−En)|x|

〈0|e2*αl|0〉 (107)

requiring knowledge of the full transfer matrix spectrum of the planar system. At the midpoint
(x = 0) however, for which l̃ = l(0), symmetry considerations simplify the expression
considerably and [5]

Pw(l̃, 0) ≡ Pw(l) = |ψ0(l)|2e2*αl

〈0|e2*αl|0〉 (108)
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which only depends on the ground-state properties of the planar problem. This is indicative that
the midpoint PDF will play a special role in the theory of wedge filling. Using these relations
it is easy to establish that the filling transition is located at θ = α (and h = 0) in precise accord
with the thermodynamic prediction. Moreover the critical behaviour falls into two categories
in agreement with the heuristic treatment of the previous section. For binding potentials with
p > 1 the asymptotic criticality is MF-like with βw = 1/p and ν⊥ = (1 +p)/2p so that lw �
ξ⊥. In the FFL regime corresponding to p > 1 the behaviour in the asymptotic scaling regime
is universal and the same as that found for systems with purely short-ranged forces using the
boundary conditions (46). At h = 0 the scaling expressions pertinent to this critical regime are

lw = 1

2*(θ − α)
(109)

Pw(l; θ − α) = 2*(θ − α)e−2*(θ−α)l (110)

fw = ln(θ − α)− ln θ (111)

corresponding to critical exponents βw = 1 and 2 − αw = 0(ln).
In the presence of random bond disorder the generalization of the interfacial model (61)

for filling transitions in open wedges is

Hw[l] =
∫

dx

{
*

2

(
dl

dx

)2

+ h(l − α|x|) + W(l − α|x|) + Vr(x, l)

}
(112)

and for systems with purely short-ranged forces (and at coexistence h = 0) the model can be
solved exactly by extending Kardar’s replica trick theory described earlier [6]. The extension is
possible because, similar to (104) the replicated Hamiltonian is the same as the corresponding
wetting model apart from a sum over terms 2*α(l̃i(0) − l̃e), which may be absorbed into the
Bethe ansatz [6]. We omit the details and only quote the final results for the infinite wedge.
The filling transition occurs at

λ = κ + *α (113)

which by virtue of (72) is equivalent to the condition θ = α. The mean midpoint height is
given exactly by

lw = 1

2κ
ψ ′
(
(λ−*α)

κ
− 1

)
(114)

which recovers the pure result (109) in the limit κ → 0. As θ → α at finite κ , the interfacial
height diverges as

lw ∼ κ

2(λ−*α − κ)2
(115)

equivalent to lw ∼ 1/(θ − α)2 and implying that βw = 2. The scaling form of the PDF
describing the asymptotic divergence of the lw is

Pw(l; θ, α) = *(θ − α)

π
√

2lκ
e−l(θ−α)2*2/2κ

∫ ∞

0
ds

√
se−s/4

s + 2l(θ − α)2*2/κ
. (116)

Finally the wedge free energy (at h = 0) is given exactly by

fw(θ, α) = ψ

(
*(θ − α)

κ

)
− ψ

(
θ*

κ

)
(117)

which exactly recovers the pure result (111) as κ → 0. As θ → α the free energy shows the
singular behaviour

f sing
w ∼ − κ

*(θ − α)
(118)

implying αw = 3. For both pure and impure systems the wedge free energy diverges to −∞
as θ → α.
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Figure 2. Interfacial configurations contributing to the one-point interfacial height PDF in two
different geometries. (a) shows the triangular-like configuration an interface adopts when it is
constrained to pass through some arbitrary point at height l � lπ at bulk two-phase co-existence.
(b) shows an interfacial configuration in a two-dimensional wedge geometry represented in terms
of the relative height l̃ (see text). Near a filling transition θ ≈ α and the contributing profiles to the
respective PDFs, Pπ (l) and Pw(l), are essentially the same.

5.2. Covariance laws for filling and wetting

The above results for two-dimensional fluctuation-dominated filling in pure and impure systems
point to a remarkable connection with the scaling behaviour occurring for the SFL regime of
critical wetting. This goes far beyond the identity of the exponents βw and βs suggested by the
heuristic scaling theory. For systems with strictly short-ranged forces and at bulk coexistence
(h = 0) we have established the following covariance relations:

lw(θ, α) = lπ (θ − α) (119)

Pw(l; θ, α) = Pπ(l; θ − α) (120)

fw(θ, α) = τ(θ)− τ(θ − α). (121)

The final relation between the wedge free energy and the point tension has not been reported
before and is one of the central new results of our paper. These ‘laws’ are also valid in the
asymptotic critical region, θ → α, even in the presence of long-ranged forces provided the
filling transition belongs to the FFL regime. We emphasize that the connection between filling
and the critical wetting SFL regime is all the more remarkable because the FFL regime is
broader. For example, recall that with purely thermal disorder the FFL corresponds to binding
potentials with p > 1 whilst the critical wetting SFL regime corresponds to p > 2. Thus for
model systems with 1 < p < 2 the filling transition precisely mimics the properties of the
SFL regime even though the wetting transition for the corresponding planar system belongs to
the WFL regime. It is in this sense that the wedge geometry effectively turns off the influence
of the long-ranged forces. We conjecture that the above covariance relations laws connecting
filling and wetting are generally true in two dimensions provided the wandering exponent
1 � ζ � 1/2.

The fluctuation-induced covariance between filling and wetting has a simple geometric
interpretation. In figure 2 are shown typical interfacial configurations contributing to the
PDF for two different geometries. On the LHS is shown the typical triangular configuration
an interface adopts at a planar wall when it is constrained to pass through a point at height
l far in excess of the mean interfacial height lπ . On the RHS is the typical configuration
for an interface in a two-dimensional wedge geometry plotted in terms of the relative height
l̃ ≡ l(x) − α|x|. Close to the filling transition θ ≈ α and consequently the typical interfacial
fluctuations contributing to the Pf (l) and Pπ(l) in the different geometries are essentially the
same. Similar remarks also apply in three dimensions for the cone geometry [9].

The covariance relations are extremely restrictive and contain a great deal of information
about the allowed values of the critical exponents at two-dimensional filling and wetting.
Indeed, it is worthwhile developing the consequences of these relations assuming only their
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validity together with the critical exponent relations derived earlier from standard scaling
theory. Firstly, from the first relation (119), it necessarily follows that

βw = β̂s = ζ

1 − ζ
(122)

in agreement with the heuristic scaling theory. It is important to realize that this identification
does not depend on the specific values of the critical exponents pertinent to the SFL regime
since the divergence of lπ (θ) as θ → 0 is determined by the critical exponent β̂s (22) rather
than by βs. This is because the covariance relations are expressed in terms of the angles θ and
α rather than the scaling fields t and t ′. Using the derived exponent relations for filling we can
now deduce the values of the other critical exponents in the FFL regime

2 − αw = 1 − 2ζ

1 − ζ
�w = 1

1 − ζ
ψw = ζ (123)

which are all universal, determined only by ζ . The second covariance law for the PDFs contains
even more information. In terms of the scaling functions this reads

.w(x) = .SFL
π (x) ≡ .(x) (124)

which clearly indicates that the connection with the SFL regime is fundamental and not a
merely fortuitous coincidence of critical exponent values. The identity of the scaling functions
now has a truly remarkable consequence. To see this note that it necessarily follows that the
SDE exponents γw and γ SFL have the same value. Recalling the general critical exponent
relations (26), (100) for these leads to the identification

1/βw = 2(1/ζ − 1)− 1/βs (125)

and using the above value for βw we find

βs = ζ

1 − ζ
(126)

which re-derives the random-walk predictions for the critical wetting SFL regime. Thus the
covariance relations severely restrict the allowed values of the critical exponents for both
two-dimensional filling and two-dimensional critical wetting.

Next we turn our attention to the free-energy covariance law. Taking the derivative of (121)
w.r.t. α we find

lw = −τ ′(θ − α)

2*
(127)

and setting α = 0 we arrive at a novel result relating the planar interfacial height to the point
tension:

lπ (θ) = −τ ′(θ)
2*

(128)

valid for interfacial models with short-ranged forces (or in the asymptotic SFL critical regime).
This relation has a number of consequences. First, equating the power-law critical singularities
on either side yields

− 2βs

2 − αs
= 2(2 − αl)

2 − αs
− 1 (129)

which reduces to

αl = αs + ν‖ (130)

thus deriving the conjectured Indekeu–Robledo exponent relation. We emphasize that in this
manipulation we have only used the general exponent relation (14) without having to introduce
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any results specific to d = 2. This is strongly suggestive that a generalization of (128), with
possibly different numerical pre-factors, may well exist for SFL regime critical wetting in
higher-dimensional systems. Secondly, beyond simple power-law singularities we can now
see that the logarithmic divergence of the point tension for purely thermal systems found by
ALU is, in fact, necessary in order that the interfacial height diverges as lπ ∼ θ−1.

The values of all the other critical exponents for filling and wetting now follow from
standard exponent relations. The connection between them can be summarized by

βw = βs αw = αl �w = ν‖ (131)

where the LHS and RHS refer to the FFL and SFL regimes respectively.
Finally, for completeness, we remark that for pure systems it has been shown [6] that for

the marginal case p = 1, q = 2 corresponding to the FFL/FMF boundary, the covariance laws
for the interfacial height and PDF relate the behaviour at filling to the WFL/MF regime of
wetting. The wedge free energy can be easily calculated for this case and is similar to (111)
but has a numerical pre-factor c = 2 + (1 + 8*b)1/2 in front of each logarithm. However we
do not discuss the possible connection with the point tension because we are not confident that
for such long-ranged forces τ is a well defined quantity. Whilst an expression for τ can be
found for such systems using the PDF identification, and is in accord with the covariance law,
we have not been able to extract τ using another, independent, method. We feel such a check
is necessary since, as shown by ALU, even for short-ranged forces, the convolution definition
of τ can lead to different results. Moreover for p = 1 it is not obvious that τ can be extracted
using a generalization of the ALU correlation length identification. It may even be that the
covariance relation between the wedge free energy and the point tension can be forwarded as
a suitable definition of the point tension for interfacial models with this marginal interaction.
This would certainly be consistent with the Indekeu–Robledo conjecture for the point tension
singularity.

6. Scaling and covariance for the local compressibility

Our treatment so far has concentrated on critical singularities occurring at bulk two-phase
coexistence h = 0. Given the precise connection between two-dimensional filling and wetting
occurring at coexistence it is natural to enquire whether this extends to quantities defined
for h > 0. Away from two-phase coexistence, however, any possible relation between two-
dimensional filling and wetting is certainly subtler than that occurring for h = 0 because
the pertinent gap exponents �w and � are different. Thus the divergences of lw ∼ h−ψw

and lπ ∼ h−ψ along the respective filling and wetting critical isotherms are quite different
and preclude a law of type (119). Similarly there can be no simple generalization of the free-
energy relation (121) because the point tension is only defined for h = 0. This suggests that we
first look for covariance relations between response functions for FFL filling and SFL critical
wetting describing infinitesimal deviations from bulk coexistence. Such relations, should they
exist, will also be notable because response functions are generally related to integrals over
two-point functions, which would suggest that these too satisfy covariance relations.

Before we calculate the scaling expressions for PDF and local compressibility for two-
dimensional filling we recall some pertinent results known for critical wetting.

6.1. SFL critical wetting

Differentiating the scaling ansatz for the profile ρ(z) w.r.t. h immediately implies that in the
scaling limit of the SFL regime, and up to an unimportant non-universal pre-factorD, the local
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compressibility χπ ≡ ∂ρ(z)/∂h evaluated at bulk coexistence (h = 0) has the form [28]

χπ(z; θ) = Dθ−2�/(2−αs)XSFL
π (z/ lπ (θ)) (132)

where Xπ(x) is a scaling function describing the universal position dependence. This is
independent of the range of the forces and is specified by the dimension and type of disorder
only. Again we emphasize this is valid in the asymptotic scaling limit θ → 0, z → ∞ with
z/lπ arbitrary. The SDE is controlled by the same exponent as the density profile so that

XSFL
π (x) ∼ xγ

SFL
(133)

as x → 0. By adopting the convention that the pre-factor is unity, the scale of Xπ is fixed and
we can regard the scaling function as universal. In effective Hamiltonian theory the behaviour
of the compressibility is directly related to that of the PDF since from (28) we have

χπ(z) = (ρv − ρl)

∫ z

0
dl

∂Pπ(l)

∂h
. (134)

The scaling form of the PDF, density profile and local compressibility emerges naturally from
the interfacial model if we use the same boundary condition (46) but retain the hl term in the
Hamiltonian. As shown by several authors, for h > 0 the ground-state wavefunction is an
Airy function [39–41] implying

Pπ(l; θ, h) ∝ Ai2
(
h1/3l − θ2h−2/3Wπ(hθ

−3)
)

(135)

where, for the sake of clarity, we have dropped non-universal metric factors and written the field
dependence in terms of θ ∼ t ′. Taking into account the h dependence coming from the free-
energy scaling function Wπ(x) and the normalization constant, it is straightforward to show
that χπ(z; θ) scales according to the prediction (132) with a universal scaling function [28]

XSFL
π (x) = (x + 1

2x
2)e−x. (136)

Notice that the SDE behaviour of this function is in accord with the general requirement (133)
although a different power-law determines the algebraic correction to the asymptotic
exponential decay.

6.2. FFL filling

In zero field the midpoint local compressibility, χw(z) ≡ ∂ρw(z)/∂h, should also show scaling
behaviour analogous to the behaviour occurring at SFL regime critical wetting. Following our
treatment above it follows from the profile equation (98) that for z → ∞, lw → ∞ with fixed
z/lw,

χw(z; θ, α) = D̃(θ − α)−�wXw(z/ lw(θ, α)) (137)

where Xw(x) is the appropriate scaling function, whose SDE is described by the critical
exponent γw. Thus we expect

Xw(x) ∼ xγw (138)

and by again adopting the convention that the critical amplitude is exactly unity we can fix the
scale of the universal function Xw(x).

The behaviour of the midpoint PDF at filling can be easily calculated using the transfer
matrix result (108) and after a little algebra we obtain

Pw(l; θ − α, h) ∝ e−2*(θ−α)l−hl2/α (139)

which is considerably simpler then the planar result. Note that the h dependence of this scaling
function has a simple geometrical meaning since the term l2/α corresponds precisely to the
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area of the filled region of the two-dimensional wedge. From (139) it is easy to check our
earlier prediction that, along the critical filling isotherm (T = Tfill, h → 0), the interfacial
height diverges as lw ∼ h−ζ . We find

lw ∼
( α

πh

)1/2
(140)

in perfect agreement with the expected behaviour for purely thermal disorder (ζ = 1/2). It
is also immediately seen from (139) that the roughness ξ⊥ ∼ lw along the critical isotherm.
We mention in passing here that this behaviour contrasts with the singularities occurring at
complete filling corresponding to h → 0 for T > Tfill. For this transition it is apparent
from (139) that the critical behaviour is not fluctuation dominated and lw ∼ h−1 whilst
ξ⊥ ∼ h−1/2. The divergence of lw agrees with predictions based solely on thermodynamic
and MF arguments, which remain valid because the fluctuation effects at complete filling are
small even for the present two-dimensional system with short-ranged forces. Returning to the
local compressibility we can readily calculate the desired expression for the zero-field local
compressibility using the PDF (139). Taking care to account for the h dependence of the
normalization factor we find that the local compressibility is precisely of the form (137) with
�w = 2 and a scaling function

Xw(x) = (x + 1
2x

2)e−x (141)

which is identical to that derived for SFL regime critical wetting. Thus we write

Xw(x) = XSFL
π (x) ≡ X(x). (142)

In terms of the full angle dependence the scaling local compressibilities satisfy the simple
covariance relationship

χw(z; θ, α)
χπ(z; θ − α)

= θ − α

α
(143)

valid in the asymptotic critical regime θ → α. The identity of the local compressibility scaling
functions for filling and SFL wetting is the main result of this section. Whilst we have only
demonstrated this for pure systems we expect this is also valid for filling and wetting in other
two-dimensional systems provided that ζ � 1/2. Support for this conjecture comes from
the derived values of the critical exponent relations. In particular in the limit z/lπ → 0 and
z/lw → 0 the SDEs for the local compressibilities are identical and hence their ratio must be
independent of z. Moreover the values of the exponents �w and 2�/(2 − αs) are always such
that the ratio is proportional to θ − α independent of ζ . It therefore seems highly likely that
the covariance relation (143) is also valid for impure systems and can be checked in future
studies.

7. Wedge covariance for pure systems revisited

Our discussion of the implications of the covariance relations in section 5 was simply based
on comparison with the predictions of standard scaling theory for critical exponent relations
and the SDEs. With a little more input concerning the properties of the interfacial Hamiltonian
model we can also use the wedge-covariance relations to re-derive the results of the transfer
matrix studies without explicit calculation. The following discussion is restricted to thermal
disorder although a generalization to the impure systems may well be possible using the replica
trick method.

In terms of the relative interfacial height l̃ − α|x| we can write the wedge Hamiltonian as
a perturbation from the planar model

Hw[l̃] = H [l̃] + δHw[l̃] (144)
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where

δHw[l̃] = −2*α
∫

dx δ(x)l̃(x) (145)

and we have ignored l̃-independent terms and the boundary conditions concerning the end-
points l̃e, which do not matter in the thermodynamic limit. Because the planar interfacial
Hamiltonian and the wedge perturbation are both local it immediately follows that, up to a
trivial normalization constant, the midpoint height PDF for pure systems satisfies

Pw(l) ∝ Pπ(l)e
2*αl (146)

which is equivalent to (108). Wedge covariance of the PDF at bulk coexistence implies

Pπ(l; θ − α) ∝ Pπ(l; θ)e2*αl (147)

and setting α = θ it follows that

Pπ(l; θ) ∝ Pπ(l; 0)e−2*θl (148)

where the position dependence of Pπ(l; 0) is determined solely by the SDE. Using the known
critical exponent relation for γ SFL we conclude that within the SFL regime the PDF is
necessarily of the form

Pπ(l; θ) ∝ l2/ζ−1/βs−3e−2*θl. (149)

From this it follows that β̂s = 1 and since β̂s = ζ/(1 − ζ ) the only value of ζ consistent with
the wedge covariance hypothesis in pure systems is

ζ = 1
2 (150)

implying that βs = 1. Similarly the universal scaling function for the PDF in the SFL must be
simply

.(x) = e−x. (151)

Now consider the PDF off coexistence and note that the exponential boost factor does
not depend on the bulk field h. It follows that in the asymptotic critical regime, the scaling
functions for filling and wetting satisfy the simple quotient relation

Pw(l; θ, α, h)
Pw(l; θ, α, 0)

∝ Pπ(l;α, h)
Pπ(l;α, 0)

(152)

where the constant of proportionality is trivially determined from the normalization conditions
on each PDF. Keeping the value of ζ arbitrary for the moment it follows that to first order in
h the quotient has the expansion

Pw(l; θ, α, h)
Pw(l; θ, α, 0)

= 1 +
Kζh

α2
(l1/ζ − 〈l1/ζ 〉) + · · · (153)

where Kζ is a pure number and 〈l1/ζ 〉 denotes the appropriate moment of the interfacial height
evaluated at h = 0. The various terms in this expansion arise for the following reasons: (1) the
quotient must tend to unity as h → 0; (2) the expansion must be linear in h because Pπ(l;α, h)
is a non-singular function of h for α > 0; (3) the power-law dependence l1/ζ is necessary since
along the filling critical isotherm (α = θ , h → 0) scaling demands that lw ∼ h−ζ ; (4) the
dependence on α follows from conditions (2), (3) given the anticipated scaling form of PDF
Pπ(l; θ, h); (5) the additive term involving 〈l1/ζ 〉 arises from the normalization condition on
each PDF.

From (153) we immediately observe that the universal scaling functions .(x) and X(x)

for FFL filling and SFL wetting must be related according to

X′(x) ∝ .(x)(1 − cζ x
1/ζ ) (154)
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where

cζ =
( ∫∞

0 s.(s) ds
)1/ζ∫∞

0 s1/ζ.(s) ds
(155)

and the constant of proportionality in (154) is trivially fixed by the condition thatX(x) ∼ x1/ζ−1

for small x. At this point we can substitute the appropriate expressions .(x) = e−x and
ζ = 1/2 for pure systems and integrate to find

X(x) = (x + 1
2x

2)e−x (156)

in agreement with the transfer matrix calculation. The differential equation (154) is also an
effective method of calculating the covariant scaling function for the local compressibility at
the FFL/FMF (or equivalently WFL/MF) borderline with p = 1, q = 2 for which the PDF
function .(x) has a non-trivial SDE [6]. Further work is required to see whether similar
approaches can determine the allowed values of ζ , .(x) and X(x) for disordered systems
without using the full transfer matrix formalism.

8. Discussion

In this paper we have investigated fluctuation effects occurring at two-dimensional filling and
the fundamental connection with the SFL regime of critical wetting. Our study has revealed
that in addition to the known covariance of the interfacial height and PDF [6, 9], the wedge
free energy and midpoint local susceptibility are also related to the point tension and local
susceptibility at wetting. These relations are extremely restrictive and determine the allowed
values of the critical exponents at FFL filling and SFL wetting without further assumptions
other than those of standard scaling theory. Moreover if wedge covariance is combined with
knowledge of how the wedge Hamiltonian is perturbed from the planar interfacial model,
then very specific predictions for the value of the wandering exponent, critical exponents and
scaling functions can be obtained. Thus wedge covariance appears to play a similar role to the
principle of conformal invariance for two-dimensional bulk critical phenomena in that it yields
predictions over and above those of scaling and scale invariance. Wedge covariance also bring
new insights into the nature of the SFL regime wetting transition itself. In particular we have
shown that the covariance relation for the wedge free energy provides a means of deriving the
conjectured Indekeu–Robledo relation for the critical singularity of the point tension and also
explains its logarithmic divergence for pure systems. Other aspects of our work that have not
been presented before include the derivation of an expression for the point tension for impure
systems and the development of a scaling theory and derivation of critical exponent relations
for two-dimensional filling transitions.

It is hoped that the present work motivates the further study of filling transitions in both
two- and three-dimensional, pure and impure systems. Within the framework of the present,
small-α interfacial model, future work could include discussion of two-point functions. These
may well exhibit some covariance properties as suggested by the behaviour of the local
compressibility. Nonlinear functional renormalization group analyses, both approximate and
exact decimation [13] type, would also shed light on the likely expanded space of the SFL
regime fixed point. Studies of fluctuation effects at filling using other models such as the full
drumhead interfacial Hamiltonian or lattice Ising model, for which only limited results are
known [11], would also be very welcome. It would also be interesting to see if the formal
statistical mechanical theory of fluids at interfaces, with its powerful sum-rule and correlation
function hierarchies [22,42,43], can be applied to the problem. Perturbative expansions of the
many-body Hamiltonian analogous to (144) and (145) may prove revealing. Staying within the
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framework of effective Hamiltonian theory it would be highly informative if the nature of both
three-dimensional wedge and cone filling were understood beyond the case of purely thermal
disorder. It is likely that this would also shed more light on the nature of the SFL regime
in higher dimensions, about which very little is currently known. Nevertheless the simple
heuristic picture of how the filling of a two-dimensional wedge manages to precisely mimic
the behaviour of the SFL regime does generalize rather naturally to the cone geometry, which
similarly enforces the same qualitative type of conic interfacial configuration that determines
large deviations in the one-point function at wetting. It is tempting to speculate that the
Indekeu–Robledo critical exponent relation may also be intimately tied to a possible covariance
for three-dimensional wedge free energy although much further work is required to quantify
this.
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